首页> 外文OA文献 >Reverse Engineering of Irreducible Polynomials in GF(2^m) Arithmetic
【2h】

Reverse Engineering of Irreducible Polynomials in GF(2^m) Arithmetic

机译:GF(2 ^ m)算法中不可约多项式的逆向工程

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Current techniques for formally verifying circuits implemented in Galoisfield (GF) arithmetic are limited to those with a known irreducible polynomialP(x). This paper presents a computer algebra based technique that extracts theirreducible polynomial P(x) used in the implementation of a multiplier inGF(2^m). The method is based on first extracting a unique polynomial in Galoisfield of each output bit independently. P(x) is then obtained by analyzing thealgebraic expression in GF(2^m) of each output bit. We demonstrate that thismethod is able to reverse engineer the irreducible polynomial of an n-bit GFmultiplier in n threads. Experiments were performed on Mastrovito andMontgomery multipliers with different P (x), including NIST-recommendedpolynomials and optimal polynomials for different microprocessor architectures.
机译:当前用于形式验证Galoisfield(GF)算法的电路的技术仅限于具有已知不可约多项式P(x)的技术。本文提出了一种基于计算机代数的技术,该技术提取了用于实现乘数inGF(2 ^ m)的可归约多项式P(x)。该方法基于首先在每个输出位的Galoisfield中独立提取唯一多项式。然后,通过分析每个输出位的GF(2 ^ m)中的代数表达式来获得P(x)。我们证明了该方法能够对n个线程中的n位GFmultiplier的不可约多项式进行逆向工程。在具有不同P(x)的Mastrovito和Montgomery乘法器上进行了实验,包括NIST推荐的多项式和针对不同微处理器体系结构的最佳多项式。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号